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Abstract—Similarity solutions for buoyancy induced heat and mass transfer from a vertical plate embedded
in a saturated porous medium are reported for (1) constant wall temperature and concentration, (2) con-
stant wall heat and mass flux. In addition, the effect of flow injection on the heat and mass transfer has
also been considered. Governing parameters for the problem under study are the buoyancy ratio, N, and
Lewis number, Le. Depending on the sign of the buoyancy ratio, inclusion of a concentration gradient
may either assist or suppress the flow induced by thermal buoyancy. The Lewis number is found to have
a more pronounced effect on the concentration field than it does on the flow and temperature fields. Resuits
for Nusselt and Sherwood numbers cover a wide range of the governing parameters, — 1 < N < 10 and
0.1 < Le < 100, and a comparison is made with the results of Bejan and Khair (Int. J. Heat Mass Transfer
28, 909-918 (1985)).

INTRODUCTION

CouprLED heat and mass transfer due to buoyancy in
saturated porous media has many important appli-
cations in energy-related engineering problems, for
example, the migration of moisture in fibrous insu-
lation, the spreading of chemical pollutants in satu-
rated soil, and the underground disposal of nuclear
wastes. From a fundamental perspective, Nield [1]
made the first attempt to study the stability of con-
vective flow in horizontal layers with imposed vertical
temperature and concentration gradients. This was
followed by Khan and Zebib [2] in the study of flow
stability in a vertical porous layer. Recently, Bejan
and co-workers [3-5] conducted a series of inves-
tigations of these effects on natural convection for
various geometries. For a vertical plate in a saturated
porous medium, Bejan and Khair [3] reported simi-
larity solutions for the special case of a wall with
constant temperature and concentration.

The purpose of the present study is to re-examine
this fundamental case. In the present study, the solu-
tions cover a wide range of parameters, —1 < N < 10
and 0.1 < Le < 100, as well as the important case of
a wall with constant heat and mass flux. In addition,
we include the effect of wall injection on the heat and
mass transfer. It is expected that the solutions thus
obtained will have useful applications in practice and
will serve as a complement to the existing literature.

ANALYSIS AND PROBLEM FORMULATION

Consider a vertical plate embedded in a saturated
porous medium. For heat and mass transfer driven
only by buoyancy, the governing equations based on
Darcy’s law are simplified by introducing the stream
function such that
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In equations (1)-(3), the boundary-layer and
Boussinesq approximations have been invoked. In
accordance with the linear Boussinesq approxima-
tion, density is given as

g= p:o[l "ﬁT(T“ Too)—'ﬁr(c"_cm)}' (4)

Case 1. No interfacial velocity

If the transfer process occurs at low concentration
difference such that the interfacial velocity due to mass
diffusion can be neglected, boundary conditions are
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Similarity solutions to equations (1)-(6) are ob-
tained via the variable transformations # = Ra'? x/y
and ¢ = o Ra"? F(y). The resulting equations are
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constant defined in equation (5)

constant defined in equation (5)

dimensionless concentration,

(C - cw)/(cw - co‘.‘)

¢ concentration

D mass diffusivity

F dimensionless stream function

o flow injection parameter defined by
equation {13)

G auxiliary function, dF/3¢

g acceleration due to gravity

h local heat transfer coefficient

K permeability

k

L

0SS W o

effective thermal conductivity
¢  Lewis number, o/D

m local mass flux at the wall

N buoyancy ratio,
[Bolew = BT, =T

Nu  local Nusselt number, Ax/k

P pressure

q local heat flux at the wall

Ra modified local Rayleigh number,
KgBr(T, — T )xfav

S auxiliafy function, 8CJd¢

Sh local Sherwood number, mx/D{(c, —c,.)

T temperature

NOMENCLATURE
constant defined in equation (5) u Darcy velocity in the x-direction
constant defined in equation (5) v Darcy velocity in the y-direction

v,  fluid injection velocity
x,y Cartesian coordinate.

Greek symbols
& thermal diffusivity of porous medium
B+ coefficient of thermal expansion,
(—1p)0p/eT)»
B.  coefficient of concentration expansion,
(—1/p)(@pjéc),
% independent similarity variable

a6 dimensionless temperature,
v kinematic viscosity

& non-similarity variable defined in
equation (21)

J4 density of convective fluid

¢ auxiliary function, 86/0¢

Y stream function.

Subscripts
w condition at the wall
oo condition at infinity
0 quantity related to the condition of no
interfacial velocity
£ quantity related to the case of constant
wall injection.

i
C"=Le (bF’C- g§~FC’> ©9)
with boundary conditions
=0, =1 C=1, F=0 (10)
oo, 0=0, C=0, F =0 (n

Equation (7) has been simplified by invoking the
boundary condition at infinity. The parameter N mea-
sures the relative importance of mass and thermal
diffusion in the buoyancy-driven flow. It is clear that
N is zero for thermal-driven flow, infinite for mass-
driven flow, positive for aiding flow, and negative for
opposing flow.

It has been shown that similarity solutions exist for
the case of thermally-driven flows [6]. Also, it can be
shown that similarity solutions can be obtained for
the two important cases: (1) @ = & = 0, which cor-
responds to a wall with constant temperature and
concentration, and (2) @ =54 =1/3, which cor-
responds to a wall with constant heat and mass flux.
It is important to note that the parallel double
boundary-layer structure is a necessary condition
for the existence of similarity solutions. For the
first case, Bejan and K hair [3] reported similarity solu-
tions for —5 < N <4 and 1 € Le < 100, except for

-1 <« N < 0. Solutions for the second case, however,
have not apparently been reported thus far.

Case 2. Effect of flow injection

In some applications, there may exist an interfacial
velocity at the wall due to injection. Two injection
velocity profiles are considered here.

For a power-law variation of injection velocity, the
governing equations are the same as equations (7)~
(9). However, the boundary condition at the wall,
equation (5), becomes

y=20,
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where v, is a positive constant. It is obvious that
the problem also permits similarity solutions if
n={a—1)/2.

In terms of similarity variables, the boundary con-
dition at the wall is

2v,

(a+Da %fi v
ov

n=0, F=f, =— (13)
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For constant injection velocity, the problem does not
permit similarity solutions. In this case, the local non-
similarity method [7-10] is employed instead. Equa-
tions (7)—(9) are transformed into a set of six sim-
ultaneous equations given by

F' =0+NC (14)

o = F’G——FB’ a1 - F'¢) (195

1 i
C' = Le l:bF'C— %Fcur “Tg(GC/—F’S)]

(16)
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with boundary conditions

n=0 6=1.C=1, —-%(1-“—;—%)
$=0, §=0, G=-1 (20a)
now, =0, C=0, F =
¢=0, S=0, G'=0. (20b)
The non-similarity variable, &, is defined by
gl

while G, ¢ and S are the auxiliary functions.

RESULTS

The transformed ordinary differential equations,
with the corresponding boundary conditions, are
solved numerically using the fourth-order Runge-
Kutta method and the shooting technique with a sys-
tematic guessing of §(0) and C’(0). To satisfy bound-
ary conditions at infinity, the integration length needs
to be chosen carefully and depends on the Lewis num-
ber and buoyancy ratio. For our calculations, it varies
from 10 to 40 for satisfactory solutions. As an indi-
cation of proper formulation and accuracy, the results
thus obtained have been compared with the published
data and show excellent agreement.

Results of practical interest are heat and mass trans-
fer rates, which are computed from
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Equations (22) and (23) clearly show that heat and
mass flux are constant fora = b = 1/3. The heat trans-
fer coefficient in terms of the Nusselt number is given
by

hx

Nu=--= —Ra" 0(0)

. 24)

and the mass transfer coefficient in terms of the
Sherwood number is given by
mx

Sh=-—-———= —Ra'? C'(0).

D(cy—c¢y) (25)

Equation (24) is plotted in Figs. 1 and 2 as a func-
tion of the Lewis number and buoyancy ratio, respec-
tively. For N > 0, heat transfer is greatly enhanced by
mass buoyancy, while it is considerably reduced for
N < 0 (Fig. 1). For N > 1, the variation of the heat
transfer coefficient essentially follows the scale analy-
sis presented by Bejan and Khair [3]. For Le < 1, the
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Fi1G. 1. Heat transfer coefficients as a function of the Lewis
number.
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F1G. 2. Heat transfer coefficients as a function of the buoy-
ancy ratio.

heat transfer coefficient is independent of the Lewis
number, while it shows a dependence of Le''? when
Le—100. For Le <1, heat transfer coefficients
increase for N > 0 and decrease for N < 0 (Fig. 2).
For Le > 1, the situation is reversed.

Contrary to what has been reported by Bejan and
Khair [3}, we have found solutions for Le = 1 and
—1 < N<0, and that solutions in the range of
N < —1 are impossible. These contradictions can be
resolved with the aid of equation (7), from which the
vertical velocity component can be computed. It is
important to note that this velocity component should
be positive for the problem under consideration and
it is clear that this velocity component will become
negative, which means the buoyant flow will be
reversed, when Le = 1 and N < — 1. For Le > 1, the
contribution to the vertical velocity by mass buoy-
ancy is less important, and the flow reversal will occur
at a smaller value of N, i.e. N < — 1. For Le < 1, the
situation is reversed and flow reversal will take place
at a larger value of N (Fig. 2). In all cases, as soon as
the flow is reversed, the boundary-layer assumption
breaks down, and no solution is meaningful.+

1 Although Bejan and Khair [3] did not state clearly in
their paper, the solutions they presented for the range of
—5 < N < —lactually corresponded to a different problem,
for which the convective flow is always downward, such
that the parallel double boundary-layer structure is main-
tained.
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For mass transfer, equation (25) is plotted in Figs.
3 and 4 as a function of Lewis number and buoyancy
ratio, respectively. It is important to note that the
mass transfer coefficient does not have a physical sig-
nificant meaning for thermally-driven flow.i.e. N = 0.
The curve for N =0 is included in Fig. 3 only for
comparison. The wvariation of the mass transfer
coefficient also follows the scalc analysis presented by
Bejan and Khair [3]. For N > 1, the slope of these
curves clearly indicates the dependence of the Lewis
number to the 1/2-power (Fig. 3). It is also observed
that the Lewis number has a more pronounced effect
on the concentration field than it does on the tem-
perature field (Fig. 4). The mass transfer coefficient is
significantly increased when the Lewis number
increases.

When taking into account the effect of flow injec-
tion, the heat and mass transfer results are shown in
Fig. 5 as a function of the flow injection parameter,
Jfw- As is the case of thermally-driven flow, injection
of fluid at the wall leads to a thicker thermal boundary
layer such that the heat transfer coefficient is
decreased. For a large value of N, the reduction of the
heat transfer coefficient is almost linear with f,,. With
constant flow injection, heat and mass transfer
coefficients defined above are modified as

Nu Sh ,
Ra'? 3 12 -C (és 0).

= _(),(éa O)s ka (26)
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F1G. 3. Mass transfer coefficients as a function of the Lewis
number.
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F1G. 4. Mass transfer coefficients as a function of the buoy-
ancy ratio.

The results can be best presented by the ratio of the
heat (mass) transfer coefficient for the present case to
that for the case of no interfacial velocity (Fig. 6). As
the interfacial velocity increases, i.e. £ increases, the
thermal and concentration boundary layers become
thicker. As a result, the heat and mass transfer
coefficients decrease considerably. The reduction in
the heat and mass transfer coefficient is especially
significant for N < 0.

CONCLUDING REMARKS

Heat and mass transfer coefficients obtained here
agree very well with the prediction by scale analysis
in a previous study [3]. However, it is also pointed out
that the solutions reported in this earlier study for
the range of —5 < N < —1 actually correspond to a
downward buoyant flow problem. For the specific
problem under study, the boundary-layer structure is
destroyed, which occurs, for example, at Le = 1 and
N < —1. When taking into account the effect of wall
injection, it is found that the heat and mass transfer
coefficients are reduced considerably, especially when
N <O.

Problems of the present kind may be encountered
in many occasions, for example, in geophysical and
geothermal applications where surface mass transfer
on the bed (hot) rock is generated due to chemical
reaction and in the underground disposal of nuclear
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Fi1G. 5. Effects of power-law flow injection on the heat and
mass transfer coefficients, Le = 1.

wastes where the spread of radioactive materials may
result from the failure of canisters. Given the prop-
erties of active species, the present analysis provides
an estimation of the life span of a viable geothermal
reservoir, or the travel time required for radionuclides
to reach the biosphere.

(o] i i i
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N

F1G. 6. Effects of constant flow injection on the heat and
mass transfer coefficients, Le = 1.
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TRANSFERT COUPLE DE CHALEUR ET DE MASSE PAR CONVECTION NATURELLE
A PARTIR DE SURFACES VERTICALES DANS UN MILIEU POREUX

Résumé—Des solutions affines pour le transfert de chaleur et de masse par convection naturelle a partir
d’une plaque verticale noyée dans un milieu poreux saturé sont rapportées pour (1) température et
concentration pariétales constantes, (2) flux pariétal de chaleur et de masse constants. On considére aussi
’effet de I'injection d’écoulement sur le transfert de chaleur et de masse. Les parameétres opératoires sont
le rapport de flottement N et le nombre de Lewis Le. Suivant Je signe du rapport de flottement, I'inclusion
d’un gradient de concentration peut soit aider, soit supprimer I'écoulement induit par le flottement
thermique. Le nombre de Lewis a un effet plus prononceé sur le champ de concentration que sur les champs
de vitesse et de température. Les résultats des nombres de Nusselt et de Sherwood couvrent un large
domaine des paramétres opératoires —1 < N < 10 et 0,1 < Le < 100, et une comparaison est faite avec
les résultats de Bejan et Khair (/nt. J. Heat Mass Transfer 28, 909-918 (1985)).

GEKOPPELTER WARME- UND STOFFTRANSPORT DURCH .I.\JATURLICHE
KONVEKTION AN SENKRECHTEN OBERFLACHEN IN POROSEN MEDIEN

Zusammenfassung—Fiir den Wirme- und Stofftransport durch natiirliche Konvektion an einer senkrechten
Oberflache, welche in ein gesittigtes poroses Medium eingebettet ist, werden Ahnlichkeitsldsungen fiir
zwei Randbedingungen vorgestellt: (1) Konstante Temperatur und Konzentration an der Wand. (2)
konstante Wirme- und Massenstromdichte an der Wand. Zusitzlich wird der EinfluB einer Stromungs-
zufuhr auf den Wirme- und Stofftransport betrachtet. Die bestimmenden Parameter fiir das untersuchte
Problem sind das Auftriebsverhaltnis (V) und die Lewis-Zahl (Le). Abhéingig vom Vorzeichen des Auf-
triebsverhiltnisses kann die Uberlagerung eines Konzentrationsgradienten die thermisch erzeugte
Auftriebsstromung entweder unterstiitzen oder unterdriicken. Es zeigt sich, dal der EinfluB der Lewis-
Zahl auf die Konzentrationsverteilung stiarker ausgeprigt ist als der EinfluBl auf die Geschwindigkeits- und
die Temperaturverteilung. In einem groflen Bereich der Parameter (—1 < N < 10 und 0,1 < Le < 100)
werden Ergebnisse in Gestalt der Nusselt- und der Sherwood-Zahl ermittelt. Diese Ergebnisse werden mit
Resultaten von Bejan und Khair (/nt. J. Heat Mass Transfer 28, 909-918 (1985)) verglichen.

B3AMMOCBSI3AHHBI CBOBO/IHOKOHBEKTUBHBIN TEIJIO- U MACCOITEPEHOC OT
BEPTUKAJIBHBIX ITOBEPXHOCTEW, MOTrPYXEHHLIX B MMOPUCTBIE CPEJbI

AnsoTaums—IIpHBOIATCS aBTOMOJENLHBIE PELUCHHUS! AJI CBOGOIHOKOHBEKTUBHOIO TEMJIO- M MAcCColie-
PeHOCa, BBI3BAHHOTO MOTPYXCHHOH B HACBILEHHYIO NMOPHCTYKY CPEAY BEPTHKAJIBHOM NIACTHHOH s
ciyvaeB (1) ¢ NOCTOAHHBIMH TEMMEPATYPOHM CTEHKH H KOHLUEHTpAUMEH, (2) C MOCTOSHHBIMH TEMIOBLIM H
MacCOBBIM MOTOKaMH Ha cTeHke. HMccnenyercs Takke BAMSAHME BAYBa Ha TEIUIO- H MACCOMEPEHOC, IIPH
3TOM ONpele/AIOIAMA NapaMeTpaMH B NaHHOW 3ajaue ABJIAIOTCS OTHOILUEHHE NOABLEMHBIX cHa N H
4icio JIbtonca Le. B 3aBHCHMOCTH OT 3Haka OTHOLUEHUS MOABEMHBIX CHJI HAIMYME IPAJMEHTA KOHIIEHT-
palMH MOXeT HJIH CIIOCOGCTBOBATb BBI3BAHHOMY KOHBEKHMEN TeYeHMIo, MM noAasasTh ero. HaiineHo,
410 4uciao JIbtonca oka3piBaeT 6ojiee CYLIECTBEHHOE BJIMSHHE Ha MNOJIe KOHUEHTPAUMil, YeM Ha nous
ckopocTeit n Temnepatyp. ITosnyyensl pe3ynbTaThl AJIA IIHPOKOro AHana3oHa H3MeHeHHs yucen Hycce-
abra u lMlepsyna, —1 < N < 10 u 0,1 < Le < 100. IpoBeneno cpaBHeHue ¢ pedynbratamu benkana u
Kxatiipa (Int. J. Heat Mass Transfer 28, 909-918 (1985)).



