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Attract-Sim~ia~ty solutions for buoyancy induced heat and mass transfer from a vertical plate embedded 
in a saturated porous medium are reported for (I) constant wall temperature and concentration, (2) con- 
stant wall heat and mass flux. In addition, the effect of flow injection on the heat and mass transfer has 
also been considered. Governing parameters for the problem under study are the buoyancy ratio, I’v’, and 
Lewis number, Le. Depending on the sign of the buoyancy ratio, inclusion of a concentration gradient 
may either assist or suppress the flow induced by thermal buoyancy. The Lewis number is found to have 
a more pronounced effect on the concentration field than it does on the flow and temperature fields. Results 
for Nusselt and Sherwood numbers cover a wide range of the governing parameters. - I < N < 10 and 
0. I < Le < 100, and a comparison is made with the results of Bejan and Khair (Int. J. Heat Mass Transfir 

28,909-918 (1985)). 

lNTRODUCTlON 

COUPLED heat and mass transfer due to buoyancy in 
saturated porous media has many important appli- 
cations in energy-related engineering problems, for 
example, the migration of moisture in fibrous insu- 
lation, the spreading of chemical pollutants in satu- 
rated soil, and the underground disposal of nuclear 
wastes. From a fundamental perspective, Nield [l] 
made the first attempt to study the stability of con- 
vective flow in horizontal layers with imposed vertical 
tem~rature and concentration gradients. This was 
followed by Khan and Zebib [2] in the study of flow 
stability in a vertical porous layer. Recently, Bejan 
and co-workers [3-51 conducted a series of inves- 
tigations of these effects on natural convection for 
various geometries. For a vertical plate in a saturated 
porous medium. Bejan and Khair [3] reported simi- 
larity solutions for the special case of a wall with 
constant temperature and concentration. 

The purpose of the present study is to re-examine 
this fundamental case. Tn the present study, the solu- 
tions cover a wide range of parameters, - 1 < N < 10 
and 0.1 < Le < 100, as well as the important case of 
a wall with constant heat and mass flux. In addition, 
we include the effect of wall injection on the heat and 
mass transfer. It is expected that the solutions thus 
obtained will have useful applications in practice and 
will serve as a complement to the existing literature. 

ANALYSIS AND PROBLEM FORMULATION 

Consider a vertical plate embedded in a saturated 
porous medium. For heat and mass transfer driven 
only by buoyancy, the governing equations based on 
Darcy’s law are simplified by introducing the stream 
function such that 

a$aT a$aT d2T 
-----=“;;? ay ax ax ay uy 

a$ ac a$ a~ a% _--_---_=- 
ay ax ax ay ay (3) 

In equations (l)-(3), the boundary-layer and 
Boussinesq approximations have been invoked. In 
accordance with the linear Boussinesq approxima- 
tion, density is given as 

P = ~,ll -BT(T-T,)--ar(c-f,)l. (4) 

Case 1. No interficial velocity 
If the transfer process occurs at low concentration 

difference such that the interfacial velocity due to mass 
diffusion can be neglected, boundary conditions are 

y = 0, T, = T, + Ax”, c, = c, +I3x”, 

DC _%, 

3X 

Y-,cQ, 
a* 

T=T,, c=c,, u=,--0. (6) 
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Similarity solutions to equations (f)-(6) are ob- 
tained via the variable transformations q = Ra”’ x/y 
and $ = cz Ra “’ F(q). The resulting equations are 

F’=O+NC’ (7) 

6” = aF’@ - F F@ (8) 



1 

NOMENCLATURE 

A constant defined in equation (5) u Darcy velocity in the x-direction 

“B 
constant defined in equation (5) c Darcy velocity in the y-direction 
constant defined in equation (5) t’w fluid injection velocity 

b constant defined in equation (5) X, y Cartesian coordinate. 
c dimensionless concentration, 

(c-c,)/(c, -c, 1 Greek symbols 
C concentration thermal diffusivity of porous medium 
D mass diffusivity ;r coefficient of thermal expansion, 
F dimensionIess stream function f- l~~)(~~/~~)~ 

.I; flow injection parameter defined by 8, coefficient of concentration expansion, 
equation (13) (- IlP)(WWP 

G auxiliary function, aF/@ Y independent similarity variable 

9 acceleration due to gravity B dimensionless temperature, 
h local heat transfer coefficient (T- W/VW - TCJ 
R permeability 1) kinematic viscosity 
k effective thermal conductivity r non-similarity variable defined in 
Le Lewis number, cc/D equation (21) 
m local mass flux at the wall density of convective fluid 
N buoyancy ratio, f;, auxiliary function, aeiar 

[BAcw--~,ww?"(~~ - TX,)1 $ stream function. 
Nu local Nusselt number, hxjk 

P pressure Subscripts 

4 local heat flux at the wall W condition at the wail 
Ra modified local Bayleigh number, condition at infinity 

KSBT(TW - 7-&/EV 0” quantity related to the condition of no 
s auxiliary func~on, X/a{ interfacial velocity 
Sh local Sherwood number, ~xj~(c~ -c,) 5 quantity related to the case of constant 
T temperature wall injection. 

C” = Le ! > fg) 
- 1 C. N < 0. Solutions for the second case, however, 
have not apparently been reported thus far. 

with boundary conditions 

n=O> O=l, C==l. F=O (10) 

q+co, D=O, c=o, F’=O. (11) 

Equation (7) has been simplified by invoking the 
boundary condition at infinity. The parameter Nmea- 
sures the relative importance of mass and thermal 
diffusion in the buoyancy-driven flow. It is clear that 
N is zero for thermal-driven flow, infinite for mass- 
driven flow, positive for aiding flow, and negative for 
opposing flow. 

It has been shown that simila~ty solutions exist for 
the case of thermally-driven flows [6]. Also, it can be 
shown that similarity solutions can be obtained for 
the two important cases: (1) a = b = 0, which cor- 
responds to a wall with constant temperature and 
concentration, and (2) a = b = l/3, which cor- 
responds to a wall with constant heat and mass flux. 
It is important to note that the parallel double 
boundary-layer structure is a necessary condition 
for the existence of similarity solutions. For the 
first case, Bejan and Khair [3] reported similarity solu- 
tions for - 5 ,< N < 4 and 1 d Le < 100, except for 

Case 2. Efleecl offlow injection 
In some applications, there may exist an interfacial 

velocity at the wall due to injection. Two injection 
velocity profiles are considered here. 

For a power-law variation of injection velocity, the 
governing equations are the same as equations (7)- 
(9). However, the boundary condition at the wall, 
equation (5), becomes 

where zll) is a positive constant. It is obvious that 
the problem also permits similarity solutions if 
n = (a- 1)/Z. 

In terms of similarity variables, the boundary con- 
dition at the wail is 

2v, 
qzzQ, F-_fwz--- ---.-“-_ 

(9+ ,)oc rK9PrAl”2 03) 
’ L av _I 
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For constant injection velocity, the problem does not 

permit similarity solutions. In this case, the local non- 

similarity method [7-lo] is employed instead. Equa- 

tions (7)-(g) are transformed into a set of six sim- v-2) 
ultaneous equations given by 

F’=B+NC (14) 

H” = aF’0- +YY+ ?S(GeM#J) (15) xc”+ 2h ‘“2C’(0). (23) 

c” = Le bF'C- FFC'+ qg(GC’-F’s) 
1 

Equations (22) and (23) clearly show that heat and 
mass flux are constant for a = b = l/3. The heat trans- 

(16) 
fer coefficient in terms of the Nusselt number is given 

by 

(17) 
Nu = ; = -Ra”* Q’(O) (24) 

and the mass transfer coefficient in terms of the 
Sherwood number is given by 

sh = mx 
O(CW -cXJ 

= - Ru’12 C'(0). (25) 

S” = Le bG’C-GC’+ 
Equation (24) is plotted in Figs. 1 and 2 as a func- 

1 

tion of the Lewis number and buoyancy ratio, respec- 

(19) 
tively. For N > 0, heat transfer is greatly enhanced by 
mass buoyancy, while it is considerably reduced for 
N < 0 (Fig. 1). For N > 1, the variation of the heat 

with boundary conditions transfer coefficient essentially follows the scale analy- 

? = 0, 19= 1, .C= 1, F= -&(1-q,) 

sis presented by Bejan and Khair [3]. For Le -c 1, the 

qb=O, S=O, G=-1 (20a) 

?-+a, e=o, c=o, F’=l 

4 = 0, S= 0, G’= 0. (20b) 

The non-similarity variable, 5, is defined by I 

5 = F$ & “2x-@- I)/2 

[ I (21) 
T 

while G, 4 and S are the auxiliary functions. 

RESULTS 

The transformed ordinary differential equations, 
IO 

with the corresponding boundary conditions, are 
solved numerically using the fourth-order Runge- 
Kutta method and the shooting technique with a sys- 
tematic guessing of Q’(0) and C’(0). To satisfy bound- 
ary conditions at infinity, the integration length needs 
to be chosen carefully and depends on the Lewis num- 
ber and buoyancy ratio. For our calculations, it varies 
from 10 to 40 for satisfactory solutions. As an indi- 
cation of proper formulation and accuracy, the results 
thus obtained have been compared with the published 

0.1 

data and show excellent agreement. lb) Le 
Results of practical interest are heat and mass trans- FIG. 1. Heat transfer coefficients as a function of the Lewis 

fer rates, which are computed from number. 
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Le 
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FIG. 2. Heat transfer coefficients as a function of the buoy- 
ancy ratio. 

heat transfer coefficient is independent of the Lewis 
number, while it shows a dependence of Le”’ when 
Le + 100. For Le -c 1, heat transfer coefficients 

increase for N > 0 and decrease for N < 0 (Fig. 2). 
For Le > 1, the situation is reversed. 

Contrary to what has been reported by Bejan and 
Khair [3], we have found solutions for Le = 1 and 
- 1 < N < 0, and that solutions in the range of 
N < - 1 are impossible. These contradictions can be 
resolved with the aid of equation (7), from which the 
vertical velocity component can be computed. It is 
important to note that this velocity component should 
be positive for the problem under consideration and 
it is clear that this velocity component will become 
negative, which means the buoyant flow will be 
reversed, when Le = 1 and N < - 1. For Le > 1, the 
contribution to the vertical velocity by mass buoy- 
ancy is less important, and the flow reversal will occur 
at a smaller value of N. i.e. N < - 1. For Lr < 1 1 the 
situation is reversed and flow reversal will take place 
at a larger value of N (Fig. 2). In all cases, as soon as 
the flow is reversed, the boundary-layer assumption 
breaks down. and no solution is meaningful.? 

1_Although Bejan and Khair [3] did not state clearly in 
their paper, the solutions they presented for the range of 
- 5 < N < - 1 actually corresponded to a different problem, 
for which the convective flow is always downward, such 
that the parallel double boundary-layer structure is main- 
tained. 

For mass transfer, equation (25) is plotted in Figs. 
3 and 4 as a function of Lewis number and buoyancy 
ratio, respectively. It is important to note that the 
mass transfer coefficient does not have a physical sig- 
nificant meaning for thermally-driven flow. i.e. N = 0. 
The curve for N = 0 is included in Fig. 3 only for 
comparison. The variation of the mass transfer 

coefficient also follows the scale analysis presented by 
Bejan and Khair [3]. For N > I, the slope of these 
curves clearly indicates the dependence of the Lewis 

number to the l/2-power (Fig. 3). It is also observed 
that the Lewis number has a more pronounced effect 

on the concentration field than it does on the tem- 
perature field (Fig. 4). The mass transfer coefficient is 
significantly increased when the Lewis number 

increases. 
When taking into account the effect of flow injec- 

tion, the heat and mass transfer results are shown in 
Fig. 5 as a function of the flow injection parameter, 

,f;. As is the case of thermally-driven flow, injection 
of fluid at the wall leads to a thicker thermal boundary 
layer such that the heat transfer coefficient is 
decreased. For a large value of N, the reduction of the 

heat transfer coefficient is almost linear with J,,. With 
constant flow injection, heat and mass transfer 
coefficients defined above are modified as 

NU 
j@T= -O’(<, O), KS> = - C’(t> 0). (26) 

0.1 
0 
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Le 

IO 
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Le 

FIG. 3. Mass transfer coefficients as a function of the Lewis 
number. 
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FIG. 4. Mass transfer coefficients as a function of the buoy- 
ancy ratio. 

The results can be best presented by the ratio of the 
heat (mass) transfer coefficient for the present case to 
that for the case of no interfacial velocity (Fig. 6). As 
the interfacial velocity increases, i.e. 5 increases, the 
thermal and concentration boundary layers become 
thicker. As a result, the heat and mass transfer 
coefficients decrease considerably. The reduction in 
the heat and mass transfer coefficient is especially 
significant for N < 0. 

CONCLUDING REMARKS 

Heat and mass transfer coefficients obtained here 
agree very well with the prediction by scale analysis 
in a previous study [3]. However, it is also pointed out 
that the solutions reported in this earlier study for 
the range of - 5 < N < - 1 actually correspond to a 
downward buoyant flow problem. For the specific 
problem under study, the boundary-layer structure is 
destroyed, which occurs, for example, at Le = 1 and 
N < - 1. When taking into account the effect of wall 
injection, it is found that the heat and mass transfer 
coefficients are reduced considerably, especially when 
N < 0. 

Problems of the present kind may be encountered 
in many occasions, for example, in geophysical and 
geothermal applications where surface mass transfer 
on the bed (hot) rock is generated due to chemical 
reaction and in the underground disposal of nuclear 

(4 

(b) 01 
-I -08 -0.6 -04 -a2 C! 

f. 

FIG. 5. Effects of power-law flow injection on the heat and 
mass transfer coefficients. Zk = 1. 

wastes where the spread of radioactive materials may 
result from the failure of canisters. Given the prop- 
erties of active species, the present analysis provides 
an estimation of the life span of a viable geothermal 
reservoir, or the travel time required for radionuclides 
to reach the biosphere. 

01 I 
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N 

cl2- 

0; 
-I 0 I 2 3 4 5 

N 

FIG. 6. Effects of constant flow injection on the heat and 
mass transfer coefficients, Le = 1. 
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TRANSFERT COUPLE DE CHALEUR ET DE MASSE PAR CONVECTION NATURELLE 
A PARTIR DE SURFACES VERTICALES DANS UN MILIEU POREUX 

R&sum&Des solutions affines pour le transfert de chaleur et de masse par convection naturelle B partir 
d’une plaque verticale noy&e dans un milieu poreux saturk sont rapport&es pour (1) temptrature et 
concentration pariitales constantes, (2) flux par&al de chaleur et de masse constants. On considkre aussi 
l’effet de l’injection d’Ccoulement sur le transfert de chaleur et de masse. Les paramitres opiratoires sont 
le rapport de flottement Net le nombre de Lewis Le. Suivant le signe du rapport de flottement, l’inclusion 
d’un gradient de concentration peut soit aider, soit supprimer I’ticoulement induit par le flottement 
thermique. Le nombre de Lewis a un effet plus pronon& sur le champ de concentration que sur les champs 
de vitesse et de tempkrature. Les Gsultats des nombres de Nusselt et de Sherwood couvrent un large 
domaine des paramttres optratoires - 1 < N i 10 et 0,l < Le < 100, et une comparaison est faite avec 

les rtsultats de Bejan et Khair (Inr. J. Heat Muss Transfer 28, 909.-918 (1985)). 

GEKOPPELTER WARME- UND STOFFTRANSPORT DURCH NATijRLICHE 
KONVEKTION AN SENKRECHTEN OBERFLACHEN IN POROSEN MEDIEN 

Zusammenfassung-Fiir den Warme- und Stofftransport durch natiirliche Konvektion an einer senkrechten 
Oberflache, welche in ein gesattigtes poriises Medium eingebettet ist, werden Ahnlichkeitsliisungen fiir 
zwei Randbedingungen vorgestellt : (I) Konstante Temperatur und Konzentration an der Wand, (2) 
konstante Wirme- und Massenstromdichte an der Wand. Zusltzlich wird der EinfluD einer Striimungs- 
zufuhr auf den Warme- und Stofftransport betrachtet. Die bestimmenden Parameter fiir das untersuchte 
Problem sind das AuftriebsverhBltnis (N) und die Lewis-Zahl (Le). Abhangig vom Vorzeichen des Auf- 
triebsverhaltnisses kann die iiberlagerung eincs Konzentrationsgradienten die thermisch er7eugte 
Auftriebsstriimung entweder unterstiitzen oder unterdriicken. Es zeigt sich, dalJ der Einflul3 der Lewis- 
Zahl auf die Konzentrationsverteilung starker ausgepragt ist als der EinfluR auf die Geschwindigkeits- und 
die Temperaturverteilung. In einem grolJen Bereich der Parameter (- I < N c: IO und 0,I < Le < 100) 
werden Ergebnisse in Gestalt der Nusselt- und der Sherwood-Zahl ermittelt. Diese Ergebnisse werden mit 

Resultaten von Bejan und Khair (In/. J. Heart Mass TrctnsfiJr 28. 909%918 (1985)) verglichen. 

B3AMMOCBR3AHHbIfi CBOSO~HOKOHBEKTWBHbI~ TEl-IJIO- M MACCOI-IEPEHOC OT 
BEPTklKknbHbIX I-IOBEPXHOCTEt’i, IIOI-PYxEHHbIX B IIOPWCTbIE CPEAbI 

AEUOT~~~~H--~~~HBO~TC~ aBToMonenbmde peme~sn arm cB060moKoHBeKTmmoro Tenno- H htaccone- 

FHOCa, BbI3BaHHOT0 nOlJ,,'XeHHOfi B HaCbnqeHH,'IO nOp&iCrylO Cpnj' BepTHKmbHOfi n,IaCTHHOii &II,, 
CJIy’iaeB (1) C nOCTORHHLdMW Tf%fllepaTypOii CTeHYH U KOHUeHTpaUHeii, (2) C ItOCTOxlHHbIMH TellJlOBblM H 
MaCCOBMM IIOTOKaMA Ha CTeHKe. kiCC,%AyeTCn TBKZK‘? BnHRHHe BnyBa Ha TennO- H MaCCOne~HOC, npH 
310~ onpenennmuulhla napahteTpahm B namoii 3anaqe mmno~c~ 0THoueme nonbeMnblx con N n 
YHC,IO nbZOHCa z%?. B 3aBHCHMOCTH OT 3HaKa OTHOllIeHHIl IIOllbeMHMX CH,, Ha.IIHYHe rparuleHTa KOHUeHT- 
paIIHH MOZ?T HJIa CnOCO6CTBOBaTb BbI3BaHHOMy KOHBeKuHeii TC’iCHUlO, HnB IlOLlaBJIRTb er0. HafineHo, 
YTO S&X0 flbl‘,kXCa OKa3bIBaeT 6onee Cy,&ZCTBeHHOe BnHIlHHe Ha nO,,e KOHMHTpallHii, YeM Ha nOnll 
cKopocreii A TehmepaTyp. nonyqessr pe3ynbTaTM arm unipoKor0 miana30Ha H3h4eHetiHn 9Hcen Hycce- 
nbTa B IIIepByna, - 1 < N < 10 H 0,l < LQ < 100. l@oeeneHo cpaBHetme c pe3ynbTaTaMH EenxaHa H 

Kxaiipa (Int. J. Heat Mass Transfer 28,909-918 (1985)). 


